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Abstract. Consistent non-trivial interactions within a special class of covariant mixed-symmetry type
tensor gauge fields of degree three are constructed from the deformation of the solution to the master
equation combined with specific cohomological techniques. In spacetime dimensions strictly greater than
four, the only consistent interaction terms are those gauge invariant under the original symmetry. Only in
four spacetime dimensions the gauge symmetry is found to be deformed.

1 Introduction

The cohomological development of the Becchi–Rouet–
Stora–Tyutin symmetry, allowed, among others, the de-
termination to be made of the general solution to the
Wess–Zumino consistency condition [1–10], of the gen-
eral form of the counterterms involved with the renormal-
ization of gauge-invariant operators (Kluberg–Stern and
Zuber conjecture) [6–12], the cohomological approach to
global symmetries and conservation laws in classical gauge
theories [13–16], the reformulation of the problem of con-
structing consistent interactions that can be introduced
in gauge-invariant theories as a problem of deformation
of the solution to the classical master equation [17–21],
etc. In particular, the cohomological reformulation of con-
sistent interactions in theories with gauge symmetries has
led to important results, such as the impossibility of cross-
interactions in multigraviton theories [22–24], or the ex-
istence of the Seiberg–Witten map in non-commutative
field theories whose commutative versions allow rigid (i.e.
non-deformable) gauge symmetries [25–27]. The funda-
mental algebraic structure on which the BRST symmetry
is based is the graded differential complex endowed with
a second-order nilpotent differential, together with the
(local) cohomology of this differential. Lately, the usual
differential tools have been developed to cover general-
ized differential N -complexes [28,29] for irreducible ten-
sor gauge fields of mixed Young symmetry type, endowed
with higher-order nilpotent operators. In this context, the
generalized Poincaré lemma, that governs the cohomology
of N -complexes related to tensor fields of mixed symme-
try type, has been formulated and proved. This modern
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differential algebraic setting helped at solving some nice
problems, like, for instance, the interpretation of the con-
struction of the Pauli–Fierz theory [30], the dual formu-
lation of linearized gravity [31,32], or the impossibility
of consistent cross-interactions in the dual formulation of
linearized gravity [32].

In this paper we investigate all consistent Lagrangian
interactions that can be added to a special class of covari-
ant mixed-symmetry type tensor gauge fields of degree
three that transform according to a reducible representa-
tion of the Lorentz group. Our main results are:
(i) in spacetime dimensions strictly greater than four, the
only consistent interactions are gauge-invariant terms,
that do not deform the gauge symmetry;
(ii) in four dimensions, there appear non-trivial consistent
deformations that modify the gauge transformations and
their reducibility, but not the gauge algebra.

Our strategy goes as follows. Initially, we generate the
antibracket–antifield BRST symmetry of the uncoupled
model with covariant mixed-symmetry type tensor fields
of degree three in an arbitrary spacetime dimension. Next,
we apply the deformation procedure and compute the
first-order deformation of the solution to the master equa-
tion, whose integrand belongs to the zeroth-order local
cohomology of the free BRST differential H0 (s|d), where
s and d mean the BRST, respectively, the exterior space-
time differentials. Further, we investigate the higher-order
deformations. Finally, we analyze the Lagrangian descrip-
tion of the interacting theory, namely, the Lagrangian ac-
tion, the deformed gauge transformations, and their tensor
structure. In D > 4 spacetime dimensions, the first-order
deformation reduces to its antighost number zero com-
ponent, while all higher-order deformations can be taken
to vanish. Thus, the original gauge symmetry is not de-
formed in this case. For D = 4, the first-order deformation
is parameterized in terms of two arbitrary constants. Its
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consistency requires that one of the constants must vanish.
Under these circumstances, the deformation of the solu-
tion to the master equation that is consistent at all orders
in the coupling constant ends at the first order. It is local,
manifestly Lorentz covariant, and, most important, non-
trivial. It follows that the gauge transformations of the
mixed-symmetry type tensor fields are truly deformed, al-
though their gauge algebra remains abelian. The interact-
ing model is also first-order reducible, but the reducibility
relations hold on-shell, in contrast to the starting uncou-
pled theory.

This paper is organized into nine sections. Section 2 in-
troduces the Lagrangian model in an arbitrary spacetime
dimension. Section 3 is devoted to the BRST symmetry
of the uncoupled theory. In Sect. 4 we briefly review the
Lagrangian mechanism for constructing consistent inter-
actions from the point of view of the antibracket–antifield
BRST method. Section 5 focuses on the deformation pro-
cedure in more that four spacetime dimensions and argues
that the only consistent interactions simply add gauge-
invariant terms to the starting action. In Sect. 6 we restrict
ourselves to the four-dimensional case, and reconsider the
uncoupled model in first-order form. In this context, in
Sect. 7 we solve the main equations of the antibracket–
antifield deformation procedure, and show that there are
consistent deformations of the solution to the classical
master equation at order one in the coupling constant. We
investigate the conditions that must be fulfilled such that
these are second- and higher-order consistent. In Sect. 8 we
identify the Lagrangian version of the interacting model
in four dimensions, and analyze the tensor structure of
the new gauge theory. Section 9 ends the paper with some
conclusions.

2 Introducing the free model

We start from the Lagrangian action for a special class
of covariant mixed-symmetry type tensor gauge fields of
degree three:

S0

[
A

(σ)
αβ

]
= − 1

12

∫
dDxF

(σ)
αβγ Fαβγ

(σ), (1)

where the fields are only antisymmetric in their first two
indices, A

(σ)
αβ = −A

(σ)
βα . The tensor fields A

(σ)
αβ can

be regarded as being described by a Young diagram with
three cells and two columns. However, they do not sat-
isfy the identity A[αβ(σ)] = 0, associated with the Young
symmetrizer of the corresponding diagram. Actually, they
transform according to a reducible representation of the
Lorentz group. This is the reason why we use the nota-
tion Aαβ(σ) instead of the standard one, Aαβ|σ. Spacetime
indices are raised and lowered with the flat Minkowskian
metric of “mostly plus” signature in D dimensions (D ≥
4): − + + + · · ·. We define the field strength components
in the usual manner:

F
(σ)

αβγ = ∂αA
(σ)

βγ +∂βA (σ)
γα +∂γA

(σ)
αβ ≡ ∂[αA

(σ)
βγ] , (2)

where we choose the convention that [αβ · · ·] signifies plain
antisymmetry with respect to the indices between brack-
ets, without additional numerical factors. The tensor fields
A

(σ)
αβ can also be viewed in some sense as a collection of

two-forms, where the collection index is spacetime-like.
This motivates the form (2) of their field strengths, as
well as the expression (1) of the Lagrangian action. It is
widely known that gauge theories involving antisymmetric
tensor fields are important due to their connection with
string theory and supergravity models [33–38]. In partic-
ular, interacting two-forms (described by the Freedman–
Townsend model) play a special role due on the one hand
to its link with Witten’s string theory [39] and, on the
other hand, to its equivalence to the non-linear sigma
model [40]. The interacting theory to be derived by us in
Sect. 8 resembles in a way the Freedman–Townsend model,
but clearly exhibits new features. The gauge invariances
of the action (1) are given by

δεA
(σ)

αβ = ∂[αε
(σ)

β] ≡
(0)
R

(σ)γ

αβ (ρ) ε (ρ)
γ , (3)

with ε
(ρ)
γ bosonic gauge parameters, that are tensors of

degree two with no symmetry, such that the gauge genera-
tors in condensed De Witt notation are expressed through

(0)
R

(σ)γ

αβ (ρ)= δσ
ρ ∂[αδγ

β]. (4)

The above gauge transformations are abelian and turn
out to be off-shell first-stage reducible, the accompanying
reducibility relations and functions respectively reading

(0)
R

(σ)γ

αβ (ρ)

(0)
Z

(ρ)

γ (τ) = 0, (5)

(0)
Z

(ρ)

γ (τ) = δρ
τ∂γ . (6)

In consequence, we deal with a usual free linear gauge
theory of Cauchy order three (being local, polynomial in
the fields and their derivatives, and satisfying the stan-
dard regularity conditions [41], whose gauge algebra is not
open, and with a finite reducibility order). As the number
of physical degrees of freedom carried by a tensor field
A

(σ)
αβ is equal to D (D − 2) (D − 3) /2, the subsequent

analysis is meaningful only for D ≥ 4.

3 BRST symmetry of the free theory

We are interested in constructing the consistent Lagran-
gian (self)interactions that can be added to the action (1)
without changing the content of the field spectrum or the
number of independent gauge symmetries. In view of this,
we apply the general rules of the antibracket–antifield de-
formation procedure based on (co)homological techniques
[17,21].

The first step in the development of the antibracket–
antifield deformation approach consists in generating the
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Lagrangian BRST symmetry of the free model under
study. The Lagrangian BRST complex is organized into
the field/ghost, respectively, antifield spectrum

Φ∆ =
(
A

(σ)
αβ , η (σ)

α , C(σ)
)

;

Φ∗
∆ =

(
A∗αβ

(σ), η
∗α

(σ), C
∗
(σ)

)
, (7)

with the Grassmann parities

ε
(
A

(σ)
αβ

)
= 0 = ε

(
C(σ)

)
, ε

(
η (σ)

α

)
= 1, (8)

ε (Φ∗
∆) =

(
ε
(
Φ∆
)

+ 1
)

mod 2. (9)

While the ghosts η
(σ)

α are due to the gauge symmetry, the
ghosts for ghosts C(σ) are required by the first-order re-
ducibility relations. The Lagrangian BRST symmetry acts
like a differential s (s2 = 0), which we assume to behave
like a right derivation. Since the gauge algebra is abelian
and the reducibility functions are field independent, it fol-
lows that s reduces to the sum of the Koszul–Tate differ-
ential δ and the exterior longitudinal derivative γ only,

s = δ + γ, (10)

that are respectively graded in terms of the antighost num-
ber (agh) and the pure ghost number (pgh) 1. While the
Koszul–Tate differential (δ2 = 0, agh (δ) = −1, pgh (δ) =
0) realizes a resolution of smooth functions defined on the
stationary surface of the field equations, the exterior lon-
gitudinal derivative (pgh (γ) = 1 , agh (γ) = 0) anticom-
mutes with δ and turns out to be a true differential in
the particular case of the model under study (γ2 = 0).
Its cohomological space at pure ghost number zero com-
puted in the homology of δ, H0 (γ|H∗ (δ)), is given by the
algebra of the Lagrangian physical observables, and is in
the meantime isomorphic to the zeroth-order cohomolog-
ical space of s, H0 (s), that contains the so-called BRST
observables [47–49]. The degrees (agh) and (pgh) of the
BRST generators (7) are given by

agh
(
Φ∆
)

= 0, agh
(
A∗αβ

(σ)

)
= 1, agh

(
η∗α

(σ)

)
= 2,

agh
(
C∗

(σ)

)
= 3, (11)

pgh (Φ∗
∆) = 0, pgh

(
A

(σ)
αβ

)
= 0, pgh

(
η (σ)

α

)
= 1,

pgh
(
C(σ)

)
= 2, (12)

while the actions of δ and γ read

δΦ∆ = 0, δA∗αβ
(σ) = − δSL

0

δA
(σ)

αβ

≡ −1
2
∂γF γαβ

(σ), (13)

δη∗α
(σ) = −2∂βA∗βα

(σ), δC∗
(σ) = ∂αη∗α

(σ), (14)

1 For more general gauge theories, s has a richer structure

than in (10), the addition of supplementary operators
(k)
s , with

agh(
(k)
s ) = k > 0 being necessary, in order to ensure the second-

order nilpotency of s

γΦ∗
∆ = 0, γA

(σ)
αβ = ∂[αη

(σ)
β] ,

γη (σ)
α = ∂αC(σ), γC(σ) = 0. (15)

The overall degree of the BRST complex is named the
ghost number (gh) and is defined like gh = pgh−agh, such
that gh (s) = 1. An important property of the Lagrangian
BRST symmetry is that it is canonically generated in a
structure named antibracket and usually denoted by (, )

[42–49] via a generator
(0)
S :

s· =
(

·,
(0)
S

)
. (16)

The fields/ghosts are decreed conjugated in the anti-
bracket with the associated antifields:(

Φ∆, Φ∗
∆′
)

= δ∆
∆′ . (17)

The second-order nilpotency of s is equivalent to the fact

that
(0)
S is a solution to the classical master equation:(
(0)
S ,

(0)
S

)
= 0, ε

(
(0)
S

)
= 0, gh

(
(0)
S

)
= 0, (18)

with some boundary conditions. In the case of the model
investigated here, with the help of the relations (10) and
(13)–(16), one finds that the complete solution to the mas-
ter equation can be written in the form

(0)
S = S0

[
A

(σ)
αβ

]
+
∫

dDx

×
(
A∗αβ

(σ)∂[α η
(σ)

β] + η∗α
(σ)∂αC(σ)

)
, (19)

and we observe that it contains pieces of antighost number
equal to zero, one, and two, respectively.

4 Brief review of antibracket–antifield
deformation procedure

In order to develop the general approach to the problem of
consistent interactions in gauge theories from the perspec-
tive of the antibracket–antifield deformation procedure,
we briefly recall some basic results [17,21]. Assume that

S̄0

[
A

(σ)
αβ

]
= S0

[
A

(σ)
αβ

]
+ g

∫
dDxa0 + O

(
g2) (20)

defines a consistent deformation of the action (1), with
deformed gauge symmetry

δ̄εA
(σ)

αβ = R̄
(σ)γ

αβ (ρ)ε
(ρ)
γ , (21)

where

R̄
(σ)γ

αβ (ρ) =
(0)
R

(σ)γ

αβ (ρ) +g
(1)
R

(σ)γ

αβ (ρ) +O
(
g2) . (22)
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Consistency means that S̄0 is fully invariant under the
gauge symmetry δ̄ε (at any order in the coupling con-
stant g), δ̄εS̄0 = 0. Moreover, we add the demand that
the number of independent deformed gauge symmetries
should remain unchanged with respect to the free theory,
which implies the existence of some first-order reducibility
functions for the interacting theory,

Z̄
(ρ)

γ (τ) =
(0)
Z

(ρ)

γ (τ) +g
(1)
Z

(ρ)

γ (τ) +O
(
g2) , (23)

such that the new reducibility relations may now hold on-
shell, i.e., on the stationary surface of field equations for
S̄0:

R̄
(σ)γ

αβ (ρ)Z̄
(ρ)

γ (τ) ≈ 0. (24)

It is possible to reformulate more economically this prob-
lem in terms of the solution to the master equation. The
key observation on which this approach relies is that a
consistent deformation of the free action (1) and of its
gauge symmetries (3) defines a deformation of the solu-
tion (19) of the master equation that preserves both the
master equation and the field/ghost–antifield spectrum.
Indeed, if the interactions can be consistently constructed,
then the solution (19) of the master equation for the free
theory can be deformed into the solution S̄ of the master
equation for the interacting theory, thus:

(0)
S → S̄ =

(0)
S +g

(1)
S +g2

(2)
S + · · · , (25)(

(0)
S ,

(0)
S

)
= 0 → (

S̄, S̄
)

= 0. (26)

The master equation
(
S̄, S̄

)
= 0 guarantees that the con-

sistency requirements on S̄0, R̄
(σ)γ

αβ (ρ) and Z̄
(ρ)

γ (τ) are ful-
filled. The main advantage in reformulating the problem
of consistent interactions as the problem of deforming the
master equation is that we can make use of the cohomo-
logical techniques of the deformation theory. The master
equation for S̄ splits according to the deformation param-
eter g as

g0 :
(

(0)
S ,

(0)
S

)
= 0, (27)

g1 : 2
(

(1)
S ,

(0)
S

)
= 0, (28)

g2 : 2
(

(2)
S ,

(0)
S

)
+
(

(1)
S ,

(1)
S

)
= 0, (29)

...

Equation (27) is checked by assumption, while (28) stip-
ulates that the first-order deformation is a cocycle of the
free BRST differential (16),

s
(1)
S = 0. (30)

However, only cohomologically non-trivial solutions to
(28) should be taken into account, since trivial (BRST-
exact) ones can be eliminated by a (in general non-linear)

field redefinition [21]. In this way, we conclude that the

non-trivial deformations
(1)
S are determined by the zeroth-

order cohomological space H0 (s) of the undeformed the-
ory, which is generically non-empty due to its isomorphism
to the space of physical observables of the free theory. The

next equation, (29), implies that
(

(1)
S ,

(1)
S

)
must be triv-

ial (BRST-exact) in the cohomology of s at ghost number
one, H1 (s). There are no obstructions in finding solutions
to the remaining equations (29), etc. (for instance, see
[21]) as long as no restrictions on the interactions, such
as spacetime locality or manifest Lorentz covariance, are
imposed. In general, the resulting interactions may be non-
local, and there might even appear obstructions if one in-
sists on their locality. However, as it will be seen below, in
the case of the model under consideration we obtain only
local and manifestly covariant interactions.

5 Deformations in D > 4

There are three different types of deformations, namely
(i) ones that modify only the Lagrangian action, but not
the gauge symmetry;
(ii) ones that change the gauge symmetries, but not their
algebra; and
(iii) ones that deform also the gauge algebra. In spacetime
dimensions strictly greater than four (D > 4), the only
consistent non-trivial deformations for the model under
study are shown to be only of type (i), and hence they
merely add to the free action (1) interaction terms that
are invariant under the original gauge transformations (3).
This can be seen by developing the first-order deformation
of the solution to the master equation according to the
antighost number

(1)
S =

n∑
k=0

∫
dDxak, gh (ak) = 0,

ε (ak) = 0, agh (ak) = k. (31)

The equation for
(1)
S , namely (30) takes the local form

s

(
n∑

k=0

ak

)
= ∂µhµ. (32)

The number of terms from the expansion of
(1)
S is finite

and it can be shown that one can take the piece of high-
est antighost number to be γ-closed, γan = 0, and so
an ∈ H (γ). This can be done by using the arguments from
[7,23,41,50]. From the definitions (13)–(15), it is simple to
see that H (γ) is generated by the field strength compo-
nents F

(σ)
αβγ and their derivatives, by the antifields Φ∗

∆

together with their derivatives, as well as by the undif-
ferentiated ghosts for ghosts C(σ). Since gh

(
C(σ)

)
= 2, it

follows that n = 2m and

an ≡ a2m = µρ1···ρm

(
[Φ∗

∆] ,
[
F

(σ)
αβγ

])
C(ρ1) · · ·C(ρm),

(33)
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where the notation f ([q]) signifies that f depends on q
and its derivatives up to a finite order. The spacetime
derivatives of the ghosts for ghosts are exact in H (γ) ac-
cording to the third relation in (15), and hence trivial,
such that they are discarded from a2m. By projecting (32)
on the antighost number (2m − 1), we infer the equation
δa2m + γa2m−1 = ∂µh′µ. Replacing the expression (33)
in the last equation, we find the result that a necessary
condition for the existence of a2m−1 is that the functions
µρ1···ρm belong to the local homology of the Koszul–Tate
differential at antighost number 2m, µρ1···ρm ∈ H2m (δ|d),

δµρ1···ρm = ∂µh′µρ1···ρm , agh (µρ1···ρm) = 2m,

pgh (µρ1···ρm) = 0. (34)

But as the model under study is linear and of Cauchy order
equal to three, we have the local homology of δ vanishing
for antighost numbers greater than three, Hk (δ|d) = 0,
k > 3. On the other hand, the last representative, an, is
constructed from some functions that pertain to an even-
order space H2m (δ|d), such that the first admitted value

2m ≤ 3 is m = 1 (n = 2). Then we can assume that
(1)
S =∑2

k=0

∫
dDxak, where a2 = µρC(ρ), with µρ ∈ H2 (δ|d).

At this stage, we remark that the general representa-
tive of H2 (δ|d) is of the form α = λ

(σ)
α η∗α

(σ), for some con-

stants λ
(σ)
α . Consequently, it follows that µρ = λση∗ρ

(σ) +

λ̃αη∗α(ρ), where λσ and λ̃α are also constant. On the other
hand, the only covariant choice of these constants is λσ =
k1∂

σ and λ̃α = k2∂α, which further yields

µρ = k1∂
ση∗ρ

(σ) + k2∂αη∗α(ρ), (35)

with k1,2 numerical constants. The second term on the
right-hand side of (35) is δ-exact (see the latter relations
in (14)). As one can always add a δ-exact term to the
solution of the equation δµρ = ∂αh′αρ , we have the result
that the second term from the right-hand side of (35) can
be removed. Then we find that

a2 = ∂σ
(
k1η

∗ρ
(σ)C(ρ)

)
− γ

(
k1η

∗ρ
(σ)η

σ
(ρ)

)
. (36)

Since we are free to add a γ-exact term and a γ-invariant
divergence to the last representative, we get the result that
a2 can be chosen to vanish, a2 = 0. Further, a1 is not el-

igible as the last representative in
(1)
S because it does not

display an even pure ghost number. As a consequence,
(1)
S

simply reduces to the component that is ghost and anti-

field independent,
(1)
S =

∫
dDxa0, where a0 is a γ-cocycle

modulo d, γa0 = ∂µh′′µ. The non-trivial solutions to these
equations are of two kinds. The first one corresponds to
h′′µ = 0 and is given by local functions that are invariant
under the original gauge transformations, which are poly-
nomials in the field strength components F

(σ)
αβγ and their

spacetime derivatives, while the second kind is associated
with h′′µ �= 0 and is spanned by generalized Chern–Simons
terms.

In conclusion, the only non-trivial first-order deforma-
tion of the solution to the master equation for a special
class of mixed-symmetry type tensor gauge fields of degree
three in spacetime dimensions strictly greater than four is,
according to the classification from the beginning of this
section, of type (i). Besides the Lagrangian action, neither
the gauge algebra, nor the gauge transformations, nor the
reducibility relations are modified. The deformed solution

S̄ =
(0)
S +g

∫
dDxa0 is already consistent to all orders in

the deformation parameter, so we can take
(k)
S = 0, k > 1.

6 Four-dimensional model in first-order form

Since there are no deformations of the free solution (19) to
the master equation in more that four spacetime dimen-
sions that truly deform the gauge transformations and
eventually their algebra, in the sequel we focus on the
four-dimensional case. It is convenient to rewrite the La-
grangian action (1) for D = 4 in first-order form. For
subsequent purposes, we replace the tensor fields A

(σ)
αβ

by their duals with respect to the antisymmetry indices,
(1/2)εαβγδAγδ(σ), which we will still denote by Aαβ

(σ), so
the Lagrangian action in first-order form becomes

S′
0

[
Aαβ

(σ), B
(σ)

α

]
=

1
2

∫
d4x

(
−B (σ)

α Bα
(σ) + Aαβ

(σ)H
(σ)

αβ

)
, (37)

by means of adding an auxiliary tensor field of degree two
B

(σ)
α with no symmetry, endowed with the field strength

H
(σ)

αβ = ∂αB
(σ)

β − ∂βB (σ)
α ≡ ∂[αB

(σ)
β] . (38)

It is known that auxiliary fields do not change the dynam-
ics, and, essentially, they do not modify the local cohomo-
logical group H0 (s|d) either [41]. The gauge invariances
of the action (37) are given by

δεA
αβ

(σ) = εαβγδ∂γεδ(σ) ≡
(0)
R

′αβ δ(ρ)

(σ) εδ(ρ),

δεB
(σ)

α = 0, (39)

with
(0)
R

′αβ δ(ρ)

(σ) = δρ
σεαβγδ∂γ , (40)

and εαβγδ is the completely antisymmetric symbol in four
spacetime dimensions, ε0123 = +1. They are off-shell first-
stage reducible, where the reducibility relations and func-
tions read

(0)
R

′αβ δ(ρ)

(σ)

(0)
Z

′ (τ)

δ(ρ) = 0, (41)

(0)
Z

′ (τ)

δ(ρ) = δτ
ρ∂δ. (42)
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The generators of the BRST complex and their degrees
are listed below:

Φ∆ =
(
Aαβ

(σ), B
(σ)

α , ηα(σ), C(σ)

)
, (43)

Φ∗
∆ =

(
A

∗ (σ)
αβ , B∗α

(σ), η
∗α(σ), C∗(σ)

)
, (44)

ε
(
Aαβ

(σ)

)
= ε

(
B (σ)

α

)
= ε

(
C(σ)

)
= 0,

ε
(
ηα(σ)

)
= 1, (45)

agh
(
Φ∆
)

= 0,

agh
(
A

∗ (σ)
αβ

)
= 1 = agh

(
B∗α

(σ)

)
, (46)

agh
(
η∗α(σ)

)
= 2, agh

(
C∗(σ)

)
= 3, (47)

pgh (Φ∗
∆) = 0,

pgh
(
Aαβ

(σ)

)
= 0 = pgh

(
B (σ)

α

)
, (48)

pgh
(
ηα(σ)

)
= 1, pgh

(
C(σ)

)
= 2. (49)

In terms of the new variables, the BRST differential s =
δ + γ of the free theory has the form

δΦ∆ = 0, δA
∗ (σ)
αβ = −1

2
H

(σ)
αβ ,

δB∗α
(σ) = Bα

(σ) + ∂βAβα
(σ), (50)

δη∗α(σ) = εαβγδ∂βA
∗ (σ)
γδ , δC∗(σ) = ∂αη∗α(σ), (51)

γΦ∗
∆ = 0, γAαβ

(σ) = εαβγδ∂γηδ(σ),

γ
(
B (σ)

α

)
= 0, (52)

γηα(σ) = ∂αC(σ), γC(σ) = 0, (53)

whereas the solution to the classical master equation for
the free model with auxiliary fields is

(0)
S = S′

0

[
Aαβ

(σ), B
(σ)

α

]
(54)

+
∫

d4x
(
εαβγδA

∗ (σ)
αβ ∂γηδ(σ) + η∗α(σ)∂αC(σ)

)
,

it being understood that s· =
(

·,
(0)
S

)
.

7 Lagrangian BRST deformation
in four dimensions

We have seen that (28) requires that the first-order de-
formation of the solution to the master equation is an
s-cocycle modulo d at ghost number zero

(1)
S =

∫
d4xa, s

(1)
S = 0 ⇔ sa = ∂µuµ. (55)

In four dimensions, on the one hand the local homology
of δ vanishes again for k > 3 [20],

Hk (δ|d) = 0, k > 3, (56)

and, on the other hand, the cohomology of γ is generated
by
(
Φ∗

∆, B
(σ)

α

)
and their spacetime derivatives up to some

finite orders, together with the undifferentiated ghosts for
ghosts C(σ). (We did not include the field strength compo-
nents (2) or their derivatives in H (γ) because the auxil-
iary fields and their derivatives take over this role via the
equations of motion for B

(σ)
α .) As discussed in the previ-

ous section, the cocycle a can be assumed to decompose
in a finite number of terms via the antighost number

a =
n∑

k=0

ak, gh (ak) = 0, agh (ak) = k, (57)

where the component of highest antighost number belongs
to H (γ):

γan = 0. (58)

Following a reasoning similar to that of Sect. 5, we infer
that n = 2m and

a2m = µρ1···ρm

(
[Φ∗

∆] ,
[
B (σ)

α

])
C(ρ1) · · ·C(ρm), (59)

with agh (µρ1···ρm) = 2m, pgh (µρ1···ρm) = 0. In the mean-
time, the local form of (55) projected on the antighost
number (2m − 1),

δa2m + γa2m−1 = ∂µvµ, (60)

induces the result that a necessary condition for the exis-
tence of a2m−1 is that

µρ1···ρm ∈ H2m (δ|d) . (61)

Combining (56) with (59), it is legitimate to presume that
the expansion (57) stops after the first three terms (n =
2m = 2),

a = a0 + a1 + a2, (62)

where a2 is of the form µρC(ρ), with µρ an element of
H2 (δ|d), whose dependence on the fields and antifields is
like in (59). After some computation, we find that H2 (δ|d)
is two-dimensional, where a possible choice of its two in-
dependent and non-trivial elements is

µ′ρ = −
(
∂ση∗α(ρ)

)
B (σ)

α + η∗α(σ)∂σB (ρ)
α

+ εαβγδA
∗ (σ)
αβ ∂σA

∗ (ρ)
γδ , (63)

µ′′ρ = −
(
∂ρη∗α(σ)

)
Bα(σ) + η∗α(σ)∂ρBα(σ)

+ εαβγδA
∗ (σ)
αβ ∂ρA∗

γδ(σ). (64)

Indeed, we have

δµ′ρ = ∂µ

(
εµαβγ

(
B (σ)

γ ∂σA
∗ (ρ)
αβ − A

∗ (σ)
αβ ∂σB (ρ)

γ

))
,

(65)

δµ′′ρ = ∂µ

(
εµαβγ

(
B (σ)

γ ∂ρA∗
αβ(σ) − A

∗ (σ)
αβ ∂ρBγ(σ)

))
.

(66)
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Consequently, the last component in the first-order defor-
mation (62) takes the concrete form

a2 =
(
−
(
c1∂ση∗α(ρ) + c2∂

ρη∗α
(σ)

)
B (σ)

α

+ η∗α(σ)
(
c1∂σB (ρ)

α + c2∂
ρBα(σ)

)
(67)

+ εαβγδA
∗ (σ)
αβ

(
c1∂σA

∗ (ρ)
γδ + c2∂

ρA∗
γδ(σ)

))
C(ρ),

with c1 and c2 two real constants, and otherwise arbitrary.
From the action of δ on a2,

δa2 = −γ
(
εαβγδ

(
A

∗ (σ)
αβ

(
c1∂σB (ρ)

γ + c2∂
ρBγ(σ)

)
−
(
c1∂σA

∗ (ρ)
αβ + c2∂

ρA∗
αβ(σ)

)
B(σ)

γ

)
ηδ(ρ)

)
+ ∂µ

(
εµαβγ

(
B (σ)

γ

(
c1∂σA

∗ (ρ)
αβ + c2∂

ρA∗
αβ(σ)

)
− A

∗ (σ)
αβ

(
c1∂σB (ρ)

γ + c2∂
ρBγ(σ)

))
C(ρ)

)
, (68)

(60) for m = 1 yields a1:

a1 = εαβγδ
(
A

∗ (σ)
αβ

(
c1∂σB (ρ)

γ + c2∂
ρBγ(σ)

)
−
(
c1∂σA

∗ (ρ)
αβ + c2∂

ρA∗
αβ(σ)

)
B(σ)

γ

)
ηδ(ρ), (69)

up to a solution a′
1 of the “homogeneous” equation γa′

1 =
∂µkµ and, certainly, up to trivial irrelevant terms. The so-
lutions of the homogeneous equation do modify the gauge
transformations, but not their algebra, since they corre-
spond to a vanishing a2. Using again the arguments from
[7,23,41,50], it can be shown that we can redefine a′

1 such
that a′

1 is a γ -cocycle, γa′
1 = 0. As pgh (a′

1) = 1, it fol-
lows that it must be linear in the ghosts ηδ(ρ) and their
spacetime derivatives. However, on account of the rela-
tions (52) and (53) we observe that neither the ghosts nor
their derivatives are non-trivial in H (γ), and hence we
can take a′

1 = 0.
At this point we are able to determine the term a0,

which is precisely the deformed Lagrangian at order one
in g. The equation for a0 follows from (55) (with a in the
form (62)) projected on the antighost number zero:

δa1 + γa0 = ∂µwµ. (70)

By means of (69), we find that

δa1 = γ
((

c1∂σB (ρ)
α + c2∂

ρBα(σ)

)
B

(σ)
β Aαβ

(ρ)

)
(71)

− ∂µ

(
εµαβγ

(
c1∂σB (ρ)

α + c2∂
ρBα(σ)

)
B

(σ)
β ηγ(ρ)

)
,

which further leads to the expression

a0 = −
(
c1∂σB (ρ)

α + c2∂
ρBα(σ)

)
B

(σ)
β Aαβ

(ρ), (72)

also up to a solution a′
0 of the “homogeneous” equation

γa′
0 = ∂µlµ corresponding to vanishing a1. These solutions

only modify the free action (37) by adding to it terms that
are invariant under the gauge transformations (39) of the

free model, γ
(∫

d4xa′
0
)

= 0. The most general form of
such gauge-invariant terms is expressed by arbitrary poly-
nomials in the auxiliary fields B

(σ)
α and their derivatives.

However, these interactions are less interesting as they
merely change the field equations, but do not modify the
gauge symmetry.

Now, the first-order deformation of the solution to the
master equation

(1)
S =

∫
d4xa =

∫
d4x (a0 + a1 + a2) , (73)

where the a0,1,2 are indicated in (67), (69) and (72), is
by construction an s-cocycle of ghost number zero, such

that
(0)
S +g

(1)
S is a solution to the master equation up to

order g. It is essential to remark that the interactions are
not trivial, and that they truly deform the gauge sym-
metry and its reducibility, since the antifields cannot be
eliminated from a even by redefinitions.

Next, let us investigate the consistency of the first-
order deformation at order g2. In this light, we invoke

(29). If we employ the notations
(2)
S =

∫
d4xb and (1/2)(

(1)
S ,

(1)
S ) =

∫
d4x∆, then (29) takes the local form

∆ = −sb + ∂µfµ. (74)

By direct computation, we get

∆ = (c1)
2
εαβγδ∂µ

(
B (µ)

α

(
B

(σ)
β

(
∂σB (ρ)

γ

)
ηδ(ρ)

− A
∗ (σ)
βγ

(
∂σB

(ρ)
δ

)
C(ρ)

)
+
(
B (µ)

α

(
∂ρA

∗ (σ)
βγ

)
B

(ρ)
δ − A

∗ (µ)
αβ

(
∂ρB

(σ)
γ

)
B

(ρ)
δ

)
× C(σ)

)
+ c2ε

αβγδ
(
∂σB (ρ)

γ

)
×
(
c1A

∗ (σ)
αβ

(
2
(
∂τBδ(ρ)

)
C(τ) + Bδ(ρ)∂

τC(τ)
)

− c2

(
2
(
∂τA

∗ (σ)
αβ

)
C(τ) + A

∗ (σ)
αβ ∂τC(τ)

)
Bδ(ρ)

)

+ c1c2ε
αβγδ

(
− Bδ(ρ)

(
∂τB (ρ)

γ

)
∂σ

(
A

∗ (σ)
αβ C(τ)

)

+
((

∂ρA
∗ (τ)
αβ

) (
∂ρBδ(σ)

)−
(
∂ρA∗

αβ(σ)

)(
∂ρB

(τ)
δ

))
× B (σ)

γ C(τ)

+
(
A∗

αβ(σ)∂
τB (σ)

γ −
(
∂τA∗

αβ(σ)

)
B (σ)

γ

)
∂ρ
(
Bδ(ρ)C(τ)

)
+
(
∂ρA∗

αβ(σ)

)(
2
(
∂τB (σ)

γ

)
C(τ) + B (σ)

γ ∂τC(τ)

)
Bδ(ρ)

−
(
2
(
∂τA∗

αβ(σ)

)
C(τ) + A∗

αβ(σ)∂
τC(τ)

)
×
(
∂ρB (σ)

γ

)
Bδ(ρ) + A∗

αβ(σ)

(
∂ρB (σ)

γ

)(
∂ρB

(τ)
δ

)
C(τ)

− Bγ(ρ)
(
∂ρBβ(σ)

)
∂τ
(
B (σ)

α ηδ(τ)

)
+ B (σ)

α

((
∂σB

(ρ)
β + ∂ρBβ(σ)

)(
∂ρB

(τ)
γ

)
ηδ(τ)
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+
(
∂τBβ(σ)

)
∂ρ
(
Bγ(ρ)ηδ(τ)

)))
+ (c2)

2
εαβγδ

×
(
B (σ)

α

(
∂ρBβ(σ)

) (
2
(
∂τBγ(ρ)

)
ηδ(τ) + Bγ(ρ)∂

τηδ(τ)
)

+
(
A∗

αβ(σ)∂
ρB (σ)

γ −
(
∂ρA∗

αβ(σ)

)
B (σ)

γ

)
× (

2
(
∂τBδ(ρ)

)
C(τ) + Bδ(ρ)∂

τC(τ)
))

. (75)

By inspecting the right-hand side of (75), we observe that
all the terms proportional with (c1)

2 simply reduce to a
four-dimensional divergence, while those with (c2)

2 and
c1c2 cannot be written as in (74). Then the consistency of
(1)
S requires that

c2 = 0. (76)

Under these considerations, (29) is satisfied for
(2)
S = 0.

The remaining equations involved with the higher-order

deformations hold if we set
(k)
S = 0, k > 2. In addition,

the constant c1 takes any non-zero real value, and, for
definiteness, will be fixed to unity:

c1 = 1. (77)

8 Identification of the interacting theory

Now, we are in the position to identify the interacting the-
ory. The complete deformed solution to the master equa-
tion for the model under study, which is consistent to all
orders in the deformation parameter, reads

S̄ =
∫

d4x

(
1
2

(
−B (σ)

α Bα
(σ) + Aαβ

(ρ)H̄
(ρ)

αβ

)
+ εαβγδ

(
A

∗ (σ)
αβ (Dγ)ρ

σ − g∂σA
∗ (ρ)
αβ B(σ)

γ

)
ηδ(ρ)

+
(
η∗α(σ) (Dα)ρ

σ − g
(
∂ση∗α(ρ)

)
B (σ)

α

)
C(ρ)

− gεαβγδA
∗ (σ)
αβ

(
∂σA

∗ (ρ)
γδ

)
C(ρ)

)
, (78)

where the field strength components of B
(ρ)

α are deformed
like

H̄
(ρ)

αβ = H
(ρ)

αβ − g
(
∂σB

(ρ)
[α

)
B

(σ)
β] , (79)

and the “covariant derivative” is defined via

(Dγ)ρ
σ = δρ

σ∂γ + g∂σB (ρ)
γ . (80)

The deformed solution (78) contains all the informa-
tion on the gauge structure of the resulting interacting
theory. More precisely, the terms of antighost number zero
induce the Lagrangian action of the coupled model,

S̄0

[
Aαβ

(σ), B
(σ)

α

]
=

1
2

∫
d4x

(
−B (σ)

α Bα
(σ) + Aαβ

(ρ)H̄
(ρ)

αβ

)
, (81)

while the pieces of antighost number one furnish its gauge
transformations

δ̄εA
αβ

(σ) = εαβγδ
(
(Dγ)ρ

σ + gδρ
σ

(
∂τB (τ)

γ + B (τ)
γ ∂τ

))
× εδ(ρ)

≡ R̄
αβ δ(ρ)

(σ) εδ(ρ), δ̄εB
(σ)

α = 0, (82)

where the new gauge generators of the tensor fields of
degree three are expressed by

R̄
αβ δ(ρ)

(σ) = εαβγδ
(
(Dγ)ρ

σ + gδρ
σ

(
∂τB (τ)

γ + B (τ)
γ ∂τ

))
.

(83)
The elements with antighost number two that are simulta-
neously linear in the ghosts for ghosts and in the antifields
of the ghosts determine the first-order reducibility func-
tions

Z̄
(ρ)

α(σ) = (Dα)ρ
σ + gδρ

σ

(
∂τB (τ)

α + B (τ)
α ∂τ

)
. (84)

The appearance of the terms quadratic in the antifields of
the fields Aαβ

(σ) and linear in the ghosts for ghosts signifies
that the first-order reducibility relations

R̄
αβ δ(ρ)

(σ) Z̄
(τ)

δ(ρ) ≈ 0, (85)

hold only on-shell (i.e., on the stationary surface of the
field equations deriving from the action (81)), in contrast
to the free model, for which the reducibility takes place off-
shell. The absence of the antifields B∗α

(σ) emphasizes that
the deformation procedure does not endow the auxiliary
fields with gauge invariances. Meanwhile, the absence of
pieces with antighost number two that are both quadratic
in the ghosts ηδ(ρ) and linear in their antifields enables us
to state that the gauge algebra of the interacting model
remains abelian. Of course, we can always add to the ac-
tion (81) any polynomial in the auxiliary fields, without
further deforming the gauge symmetry.

The added interactions do not spoil either the locality,
or the manifest Lorentz covariance, and, essentially, are
non-trivial as the terms involving antifields cannot be re-
moved from the deformed solution to the master equation
by adding to it trivial (s-exact modulo d) terms.

9 Conclusion

To conclude, in this paper we have investigated the con-
sistent Lagrangian interactions for a special class of co-
variant reducible mixed-symmetry type tensor gauge fields
of degree three. In spacetime dimensions strictly greater
than four the couplings do not modify the gauge sym-
metry of the initial free model, and are merely given by
strictly gauge-invariant quantities or generalized Chern–
Simons terms. A privileged situation is encountered in four
spacetime dimensions, where there appear non-trivial con-
sistent interactions that truly deform the gauge symmetry
and the behavior of the reducibility relations, but not the
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gauge algebra. In this sense, both situations reveal the
rigidity of the original abelian gauge algebra against the
deformation procedure.

The analysis developed in this paper can be useful at
the study of introducing general interactions among co-
variant mixed-symmetry type tensor gauge fields, such as
those involved with integer higher spin gauge theories (in
direct or dual formulations).

Acknowledgements. This work has been supported by MEC-
CNCSIS-Romania (type-A grant 944/2002).

References

1. A. Barkallil, G. Barnich, C. Schomblond, Results on the
Wess-Zumino consistency condition for arbitrary Lie alge-
bras [math-ph/0205047]

2. G. Barnich, Phys. Rev. D 62, 045007 (2000)
[hep-th/0003135]

3. G. Barnich, F. Brandt, M. Henneaux, Phys. Lett. B 346,
81 (1995) [hep-th/9411202]

4. G. Barnich, F. Brandt, M. Henneaux, Phys. Rev. D 51,
1435 (1995) [hep-th/9409104]

5. M. Dubois-Violette, M. Henneaux, M. Talon, C.M. Viallet,
Phys. Lett. B 289, 361 (1992) [hep-th/9206106]

6. G. Barnich, A note on the BRST cohomology of the
extended antifield formalism, Proceedings of the Spring
School in QFT, Supersymmetries, Superstrings (Cali-
manesti, Romania, 24–30 April 1998), Phys. Ann. Univ.
of Craiova 9, 92 (1999) [hep-th/9912247]

7. G. Barnich, F. Brandt, M. Henneaux, Phys. Rept. 338,
439 (2000) [hep-th/0002245]

8. G. Barnich, Phys. Lett. B 419, 211 (1998)
[hep-th/9710162]

9. M. Henneaux, Phys. Lett. B 406, 66 (1997)
[hep-th/9704023]

10. G. Barnich, M. Henneaux, Phys. Rev. Lett. 72, 1588
(1994) [hep-th/9312206]

11. G. Barnich, JHEP 9903, 010 (1999) [hep-th/9805030]
12. M. Henneaux, Phys. Lett. B 313, 35 (1993)

[hep-th/9306101]; Erratum-ibid. B 316, 633 (1993)
13. G. Barnich, F. Brandt, Nucl. Phys. B 633, 3 (2002) [hep-

th/0111246]
14. G. Barnich, Classical and quantum aspects of the extended

antifield formalism, These d’agregation, Universite Libre
de Bruxelles (June 2000) [hep-th/0011120]

15. F. Brandt, M. Henneaux, A. Wilch, Nucl. Phys. B 510,
640 (1998) [hep-th/9705007]

16. F. Brandt, M. Henneaux, A. Wilch, Phys. Lett. B 387,
320 (1996) [hep-th/9606172]

17. M. Henneaux, Contemp. Math. 219, 93 (1998)
[hep-th/9712226]

18. M. Henneaux, B. Knaepen, Phys. Rev. D 56, 6076 (1997)
[hep-th/9706119]

19. M. Henneaux, B. Knaepen, C. Schomblond, Commun.
Math. Phys. 186, 137 (1997) [hep-th/9606181]

20. M. Henneaux, Phys. Lett. B 368, 83 (1996)
[hep-th/9511145]

21. G. Barnich, M. Henneaux, Phys. Lett. B 311, 123 (1993)
[hep-th/9304057]

22. N. Boulanger, Fortsch. Phys. 50, 858 (2002)
[hep-th/0111216]

23. N. Boulanger, T. Damour, L. Gualtieri, M. Henneaux,
Nucl. Phys. B 597, 127 (2001) [hep-th/0007220]

24. N. Boulanger, T. Damour, L. Gualtieri, M. Henneaux, No
consistent cross-interactions for a collection of massless
spin-2 fields, Proceedings of the Spring School in QFT and
Hamiltonian Systems (Calimanesti, Romania, 2–7 May
2000), Phys. Ann. Univ. of Craiova 10, 94 (2000) [hep-
th/0009109]

25. G. Barnich, F. Brandt, M. Grigoriev, JHEP 0208, 023
(2002) [hep-th/0206003]

26. G. Barnich, F. Brandt, M. Grigoriev, Fortsch. Phys. 50,
825 (2002) [hep-th/0201139]

27. G. Barnich, M. Grigoriev, M. Henneaux, JHEP 0110, 004
(2001) [hep-th/0106188]

28. M. Dubois-Violette, M. Heneaux, Commun. Math. Phys.
226, 393 (2002) [math.QA/0110088]

29. M. Dubois-Violette, M. Heneaux, Lett. Math. Phys. 49,
245 (1999) [math.QA/9907135]

30. X. Bekaert, N. Boulanger, Tensor gauge fields in arbitrary
representations of GL(D,R): duality & Poincaré lemma
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